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We present an out-of-core filter-diagonalization method which can be used to
solve very large electronic structure problems within the framework of the one-
electron pseudopotential-based methods. The approach is based on the following
three steps. First, nonorthogonal states in a desired energy range are generated us-
ing the filter-diagonalization method. Next, these states are orthogonalized using the
Householder Q R orthogonalization method. Finally, the Hamiltonian is diagonal-
ized within the subspace spanned by the orthogonal states generated in the second
step. The main limiting step in the calculation is the orthogonalization step, which
requires a huge main memory for large systems. To overcome this limitation we
have developed and implemented an out-of-core orthogonalization method which
allows us to store the states on disks without significantly slowing the computa-
tion. We apply the out-of-core filter-diagonalization method to solve the electronic
structure of a quantum dot within the framework of the semiempirical pseudopo-
tential method and show that problems which require tens of gigabytes to rep-
resents the electronic states and electronic density can be solved on a personal
computer. c© 2002 Elsevier Science (USA)

Key Words: electronic structure; singular-value decomposition; Q R decomposi-
tion; out-of-core.

1. INTRODUCTION

One of the most challenging problems of computational physics is to extend the size of
systems that can be studied computationally. For example, much attention has been given
in recent years to the development of methods for large electronic structure calculations
[1, 2].
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Most electronic structure methods rely on solving an effective single-particle Schrödinger
equation,

Hψn(r) =
{

− 1

2
∇2 + V (r)

}
= εnψn(r), (1)

where ψn(r) are the orthogonal single-particle electronic wavefunctions and V (r) is the
total potential of the system. The solution to the Schrödinger equation typically requires
the calculation of all occupied eigenstates, since in many situations electronic densities
and molecular geometries are needed. Furthermore, in many electronic structure theories,
such as the Hartree–Fock approach [3] or the Kohn–Sham approximation to the density
functional theory [4, 5], the solution to Eq. (1) needs to be done iteratively, since V (r)
depends functionally on all occupied solutions.

For small systems that contain a few tens of atoms, direct diagonalization of the
Hamiltonian in Eq. (1) in a given basis is possible. The computational effort required
by this approach scales as O(N 3), where N is the total number of basis functions. As a re-
sult, the application of this approach to large systems is mainly limited by the cubic scaling
law. This problem has led to the development of direct minimization techniques such as
the conjugate gradient method [1], and to linear-scaling techniques [2]. All these methods
rely on the sparsity of the Hamiltonian matrix. The conjugate gradient method requires the
storage of all occupied states, a task that becomes impractical for large systems, while the
application of the linear-scaling techniques to realistic systems is still limited by the current
available computer resources.

In this work we present a new approach, the out-of-core filter-diagonalization (OOC–FD)
method, to solve large electronic structure problems. The method is simple and robust and
can be implemented on a personal computer. It is based on the following three steps.

• Filtering step: States in a desired range of eigenvalues are generated and stored in files
using the filter-diagonalization method [6–8]. These states are nonorthogonal and therefore
are not eigenstates of the Hamiltonian; they may even be linearly dependent. This step does
not require large memory and can be carried out in parallel.

• Orthogonalization step: The states generated in the first step are orthogonalized using
the Q R and singular-value decomposition (SVD) methods. This step requires the storage of
all states in memory, which for large systems becomes the bottleneck of the computation.
To overcome this limitation we have developed and implemented an out-of-core orthogo-
nalization method which allows us to store the states on disks without significantly slowing
the computation.

• Diagonalization step: The Hamiltonian is diagonalized within the subspace spanned
by the orthogonal states generated in the second step. We use an out-of-core matrix multipli-
cation algorithm to generate the eigenstates of the Hamiltonian within the desired subspace.

While the first filtering step has been used for a wide variate of problems, including
the study of electronic properties of large materials [9], the last two steps involve a novel
out-of-core algorithm, which is applied to a realistic physical system for the first time. In the
application reported below we have used the OOC–FD method to obtain the electronic states
of a semiconductor nanocrystal that contains thousands of atoms and requires approximately
70 GB of disk storage to obtain the occupied states. To the best of our knowledge, this
is significantly larger than a typical calculation based on a conventional application of
electronic structure calculations within the same physical framework.
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The OOC–FD method is mostly suited for “single-point” electronic structure calculations
and for geometry optimizations. We do not claim that the method is computationally more
efficient than other sparse-Hamiltonian methods; however, the structure of the algorithm en-
ables an out-of-core implementation. This is the main advantage of the OOC–FD approach:
the computational cost is comparable to other sparse-Hamiltonian methods; however it can
be implemented on commodity hardware and applied to large system that require storage of
tens of gigabytes. This is not possible using other sparse-Hamiltonian methods, such as the
conjugate–gradient method, where an out-of-core implementations will significantly slow
the computation, and therefore the application of other methods is mainly limited by the
size of main memory.

The paper is structured as follows. In Section 2 we outline the OOC–FD method, and in
Section 3 we describe in detail the most challenging phase in the OOC–FD method, namely
the second stage that involve a new out-of-core Q R and SVD decomposition methods. The
code’s performance is summarized in Section 4, where we report the performance of the out-
of-core stage for a model random matrix. The OOC–FD method is applied to study the
electronic properties of a large semiconducting CdSe quantum dot in Section 5. Finally, in
Section 6 we present our conclusions.

2. THE OUT-OF-CORE FILTER-DIAGONALIZATION METHOD

The overall objective of the out-of-core filter-diagonalization method is to compute the
eigenvalues and eigenstates in a given range of eigenvalues of an equation of the general form

HC = CE, (2)

where H is a sparse Hermitian matrix, the columns of C are the coefficients of the eigen-
states, and E is a diagonal matrix containing the eigenvalues. Since the matrix H is too large
to fit in the main memory and cannot be diagonalized directly, we must use an alternative
approach to obtain the desired eigenvalues and eigenstates. The key point in the OOC–FD
method outlined below is that the matrix H is sparse1, and that not all eigenvalues and
eigenvectors are required, only a small set of them.

The OOC–FD method is based on the following three steps.

1. First, nonorthogonal states in a desired energy range are generated using the filter-
diagonalization method [6–8].

2. Next, these states are orthogonalized using the singular-value decomposition method.
3. Finally, the matrix H is diagonalized within the subspace spanned by the orthogonal

states generated in the second step.

While the first filtering step has been applied in the past for a wide variety of problems,
including the study of electronic properties of nanocrystals [9], the last two steps involve
a new out-of-core algorithm. Thus, we briefly describe all three steps in this section and
provide a detailed discussion of the orthogonalization step in the next section.

1 By sparse we mean here that one can operate with the matrix H on an arbitrary vector in the relevant space
quickly.
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2.1. The Filtering Step

The first step in the OOC–FD method is the filtering step. We start with ni arbitrary initial
states Ci that contain all the desired eigenstates. In the application described in Section 5
we use a random initial state Ci with values uniformly distributed between −1 and +1 and
then normalize the random states to unit norm. This choice ensures that the initial states
contain contributions from all eigenstates. We then apply ne filters to each initial state of
the form

C f = fe(H)Ci , (3)

thus generating nf = ni × ne filtered states. Each filter, fe(H), is designed to filter out
eigenstates with eigenvalues far from some target value, Ee. The choice of the filter function
is not unique; in the application described below we use a Gaussian filter [10]

fe(H) = exp

{
− 1

2

(
H − Ee

σe

)2}
, (4)

but other filters can be used as well [11]. The filters in Eq. (4) are implemented using a power
series in H . In this work we have used the Newton interpolation polynomial scheme [12],
where the filters were approximated by the interpolation polynomial

fe(H) ≈ Pe
N (H) =

N∑
j=0

a j (Ee)R j (H), (5)

where

R j (H) =
j−1∏
k=0

(H − hk) (6)

and the coefficients are given by

a0(Ee) = fe(h0),

a1(Ee) = fe(h1) − fe(h0)

h1 − h0
, (7)

a j>1(Ee) = fe(h j ) − Pe
j−1(h j )

R j (h j )
.

In the above equations, hk are the support points taken to be the zeros of the N + 1 Chebyshev
polynomial [13]. This choice defines the points on the interval [−2, +2], and the matrix H
is rescaled so that its spectrum of eigenvalues lies in the desired interval

Hs = 4
H − Emin

Emax − Emin
− 2. (8)

Emin and Emax are the lowest and highest eigenvalues of the matrix H , respectively. The
final result for the filtered states is given by

C f =
N−1∑
j=0

a j (Ee)C
j

i , (9)
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and we use the recursion relation to generate the C j
i (C0

i = Ci ),

C j+1
i = (Hs − h j )C

j
i . (10)

Note that in Eq. (5) only the coefficients a j (Ee) depend on the target value Ee. Hence, it is
possible to use the same interpolation polynomial (with different expansion coefficients) to
obtain many states simultaneously, and therefore to reduce significantly the computational
effort needed to generated the power series in H . In addition, since many initial-guess
states are required to generate the filtered states, this step can be carried out in parallel
by simply filtering out each initial guess state on a different CPU. Finally, to reduce the
computational effort in the second step, each set of the filtered states that are generated from
a single Newton interpolation polynomial on a random initial-guess state is orthogonalized
following the same strategy described below for the second step; however, since there are
very few states involved, an in-core algorithm is used.

2.2. Out-of-Core Orthogonalization

The second step in the OOC–FD method is the out-of-core orthogonalization step using
the SVD decomposition method. Since both the input matrix C f generated in the filtering
step2 and the orthonormal basis U that is used to reduce the dimensionality of H in the
third step are too large to fit in main memory, we must store them on disks. We therefore
use the following out-of-core strategy.

• An out-of-core algorithm computes the Q R decomposition of C f , C f = Q R, using
the Householder transformation. The matrix Q whose columns include an orthogonal basis
for the column space of C f is stored on disks since its dimensions are similar to that of the
matrix C f . But the matrix R, which is a square matrix with dimensions equal to the small
dimension of C f , is small enough to fit in main memory.

• An in-core algorithm (from LAPACK [14]) computes the SVD of R, R = U1
V T .
• An out-of-core matrix multiplication algorithm computes U = QU1, where Q is stored

on disks, usually not explicitly, and U is written to disks. Now C f = U
V T is the SVD
of C f .

• We prune from U singular vectors that correspond to zero (or numerically insignificant)
singular values. The remaining vectors form U ′, an orthonormal basis for the columns of C f .

Since this step is the most challenging phase in the OOC–FD method we return to it in
Section 3 and describe it in great detail.

2.3. Diagonalization

The last step in the OOC–FD method is the diagonalization of the matrix H within
the subspace spanned by the orthonormal vectors obtained in the second step. Since the
orthonormal basis U ′ that is used to reduce the dimensionality of H does not fit in main
memory, we use the following out-of-core scheme.

• We apply H to U ′ by reading blocks of columns of U ′, applying H to them using
a matrix–vector multiplication routine that quickly applies H , and write the transformed
vectors back to disk.

2 Typically C f consists of several hundred to several thousands of vectors whose length is between 200,000 and
2,000,000.



OUT-OF-CORE FILTER DIAGONALIZATION 261

• An out-of-core matrix multiplication computes Ĥ = (U ′)T (HU ′) to produce the in-
core product of two out-of-core matrices.

• An in-core algorithm (from LAPACK [14]) diagonalizes Ĥ to obtain the diagonal
matrix E in Eq. (2).

• An out-of-core matrix multiplication algorithm computes C = U ′Û , where Û is the
matrix that diagonalized Ĥ , and C are the coefficients of the eigenstates of H (cf. Eq. (2))
in the given energy range.

3. THE OUT-OF-CORE QR DECOMPOSITION

We now describe in detail the most challenging phase in the out-of-core SVD of tall
narrow matrices, namely the out-of-core Q R decomposition. Readers who are not interested
in these details may proceed to the next section.

Since the input matrix is tall and narrow, as shown in Fig. 1, we cannot use a con-
ventional block-column approach for the Q R phase. We use instead a recursive block-
Householder Q R algorithm due to Elmroth and Gustavson [15, 16] in order to achieve a
high level of data reuse. The locality of reference in block-column approaches depends
on the ability to store a fairly large number of columns in main memory. In our case,
we often cannot store more than 10 columns in main memory, even on machines with
several gigabytes of main memory. Recursive formulations of decomposition algorithms
that must operate on full columns, such as Q R and LU with partial pivoting, enhance
locality of reference over block-column formulations for matrices of all shapes. As a re-
sult, recursive formulations perform better because they perform fewer cache misses and
because they require less I/O in out-of-core codes [15–17]. But while the benefit of re-
cursive formulations is small when processing square matrices, the benefit is enormous for
tall narrow matrices, as shown for the LU decomposition by Toledo in [17] and for the
Q R decomposition by Elmroth and Gustavson in [15, 16]. As a result, our algorithm per-
forms the Q R decomposition at rates that are not much slower than in-core computational
rates.

We use a block-Householder Q R algorithm rather than the cheaper modified Gram–
Schmidt Q R algorithm since the columns of C f in our application are often linearly de-
pendent, and in such cases neither classical nor modified Gram–Schimdt is guaranteed to
return an orthogonal Q due to rounding errors (see, for example, [18], Chap. 18). Classical
and modified Gram–Schimdt perform approximately 2mn2 floating-point operations (flops)
when C f is m-by-n and m � n, whereas Householder performs approximately 4mn2, but
the extra cost is essentially unavoidable when C f is rank deficient.

Cf Q R

=

FIG. 1. A tall and narrow Q R factorization of a matrix C f . C f is a general rectangular matrix, Q has
orthonormal columns, and R is upper triangular. In our application, the rows/columns ratio of C f is approximately
500/1.
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Application

Out-of-Core BLAS, Factorizations

BLAS & LAPACK
and/or
PBLAS & ScaLAPACK

Matrix
Input/Output

BLACS

MPI

Operating System

FIG. 2. The software structure of SOLAR. The gray areas represent components of SOLAR; the white areas
represent other software components. The BLACS are the communication routines of ScaLAPACK; SOLAR uses
them as well. The BLACS use, in turn, MPI, a message-passing interface, which uses the operating systems.
Solar’s matrix input–output routines use the operating system to perform input–output.

We prefer to compute the SVD of C f rather than a rank-revealing Q R factorization
because the extra expense of computing the SVD of R is insignificant in our application,
since the input matrix is tall and thin. In addition, we are not aware of an efficient column-
pivoting scheme for out-of-core matrices. In other words, the column-pivoting actions of a
rank-revealing Q R factorization are likely to increase the amount of I/O in an out-of-core
factorization, but the savings in floating-point arithmetic over the SVD are insignificant
when the matrix is thin and tall. More specifically, a rank-revealing Q R factorization of C f

performs about 4mn2 − 2n3/3 flops, whereas the SVD performs about 4mn2 + 11n3 (see
[19], Section 5.5.9). For m � n, the difference is negligible.

We implemented the new out-of-core Q R and SVD algorithms as part of SOLAR [20], a
library of out-of-core linear algebra subroutines, whose overall structure is shown in Fig. 2.
Before we started the current project, SOLAR already included sequential and parallel out-
of-core codes for matrix multiplication, solutions of triangular linear systems, Cholesky fac-
torizations, and LU factorizations with partial pivoting. SOLAR can exploit shared-memory
parallel processing, distributed-memory parallel processing (or both), parallel input–output,
and nonblocking input–output. SOLAR exploits distributed-memory parallel processing us-
ing explicit calls to ScaLAPACK, the PBLAS (ScaLAPACK’s parallel BLAS routines), and
the BLACS (ScaLAPACK’s communication routines). ScaLAPACK and the PBLAS per-
form communication only through the BLACS, which use MPI internally. Due to the use
of ScaLAPACK, the PBLAS, and the BLACS, the code is highly portable, at least among
Unix and Linux platforms. SOLAR can process real and complex matrices, single or double
precision.

The main new addition to SOLAR is the out-of-core Q R factorization. The new code
is optimized for tall narrow matrices and uses existing subroutines extensively to multiply
matrices and to solve triangular systems. The focus on tall narrow matrices allows us to
simplify the code in two ways, which would not be possible if the code were to work
effectively on square or nearly square matrices. First, focusing on tall narrow matrices
allowed us to use the SVD rather than a rank-revealing Q R factorization without significant
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performance implications. Second, focusing on tall narrow matrices allows us to assume
that n-by-n matrices fit in main memory.

One unique feature of SOLAR was particularly valuable in the implementation of the
Q R solver. Most SOLAR routines, such as the matrix multiplication routine (out-of-core
GEMM), can process any mix of in-core and out-of-core arguments. For example, SOLAR
can multiply an out-of-core matrix by an in-core matrix and add the product to an out-of-
core matrix. During the recursive Q R factorization of a tall narrow matrix we often multiply
a large matrix, which we must store out-of-core, by a small matrix that we prefer to leave
in-core, so this feature of SOLAR is helpful. On the other hand, SOLAR still lacks some
subroutines that could have been useful, such as a triangular matrix multiplication routine
(TRMM). Consequently, we had to use instead the more general GEMM routine, which
causes the code to perform more floating-point operations than necessary. This overhead is
relatively small, however.

We have also modified the I/O layer of SOLAR over the one described in [20]. The cha-
nges allowSOLARtoperformnonblockingI/O without relying on operating-system support
(which sometimes performs poorly), they allow SOLAR to perform I/O in distributed-
memory environments without a data-redistribution phase, and they allow SOLAR to per-
form I/O without allocating large auxiliary buffers. These changes allow the algorithms to
control main memory usage more accurately and more easily than before.

As in many other applications of out-of-core numerical software [21], our primary goal
was to be able to solve very large systems, not necessarily to solve them quickly. The largest
computer currently at our disposal has only 14 GB of main memory, so we simply cannot
solve very large systems without an out-of-core algorithm. While we would like to solve
large systems quickly, a running time of a day or two, perhaps up to a week, is entirely
acceptable to us, mainly because the SVD code is part of a larger application and it is not
the most time-consuming part, only the most memory consuming. We therefore used the
following rule of thumb while developing the code: keep the amount of I/O low to achieve
acceptable performance, but do not try to eliminate small amounts of I/O if doing so requires
a significant programming effort.

As a consequence of this design decision we were able to design and implement the
algorithm relatively quickly using existing SOLAR subroutines. The resulting algorithm
often achieves over 60% of the peak performance of the computer, but it could probably
achieve more if more I/O is optimized away. I/O could be eliminated by implementing
out-of-core triangular matrix multiplication routines in SOLAR (which currently only has
a routine for general rectangular matrices) and by avoiding the storage and retrieval of
blocks of explicit zeros. The number of floating-point operations would also be reduced by
applying these optimizations.

When developing algorithms and codes for very large systems, one must consider parallel
algorithms and implementations. Designing and implementing a parallel algorithm requires
more effort than a sequential algorithm, but the performance of the parallel code typically
scales better given a sufficient number of processors. We have decided to implement a
sequential out-of-core Q R decomposition algorithm, rather than a parallel out-of-core al-
gorithm. In our application, the filtering stage, which has been parallelized, requires about
10 times more CPU time than the orthogonalization step. Therefore, parallelizing the or-
thogonalization step can only improve the scalability of the overall application when a fairly
large number of processors is used. Since we designed the application for small clusters, par-
allelizing the orthogonalization step did not seem urgent and was left open for future study.
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We use a recursive out-of-core algorithm for computing the compact-W Y representation
of Q, Q = I − Y T Y T . The basic in-core formulation of this algorithm is due to Elmroth and
Gustavson [15, 16]. The input of the algorithm is C f and its output is the triplet (Y, R, T ).
The algorithm factors an m-by-n matrix as follows.

1. If n = 1, then compute the Householder transformation Q = I − t yyT such that
QC f = (r, 0, . . . , 0)T (t and r are scalars, y is a column vector). Return the triplet (y, r, t).
We have Y = y, T = t , and R = r .

2. Otherwise, split C f into [C1C2], where C1 consists of the left n1 = n/2� columns of
C f and C2 consists of the right n2 = n − n1 columns.

3. Compute recursively the factorization (Y1, R11, T11) of C1.
4. Update C̃2 = QT

1 C2 = (I − Y1T11Y T
1 )C2.

5. Compute recursively the factorization (Y2, R22, T22) of the last m − n1 rows of C̃2.
6. Compute T12 = −T11(Y T

11Y22)T22.
7. Form R3, which consists of the first n1 rows of C̃ f .
8. Return

(
[ Y1 Y2 ],

[
R11 R12

0 R22

]
,

[
T11 T12

0 T22

])
.

Memory management, both in- and out-of-core, is an important aspect of out-of-core
algorithms. Our recursive Q R code works with one m-by-n out-of-core matrix and three
in-core n-by-n matrices. The out-of-core matrix initially stores C f and is overwritten by Y .
One of the small in-core matrices is passed in by the user as an argument to receive R. The
code allocated internally two more matrices of the same size, one to store T and the other,
denoted Z , as temporary storage. The remaining main memory is used by the algorithm to
hold blocks of C f and Y that are operated upon.

The out-of-core implementation of the recursive Q R algorithm does not stop the recursion
when n = 1 but when n is small enough so that the block of C f to be factored fits within
the remaining main memory (taking into account the memory already consumed by R, T ,
and Z ). If the block of C f fits within main memory, the code reads it from disk, computes
(Y, R, T ) in core, and writes Y back to disk, overwriting columns of C f . The in-core
factorization algorithm is, in fact, an implementation of the same recursive algorithm. We
use this recursive algorithm rather than an existing subroutine from, say, LAPACK [14],
because the matrices that this routine must factor are extremely thin, such as 2,000,000
by 20, and as shown in [15, 16], the recursive algorithm outperforms LAPACK’s blocked
algorithm by a large factor in such cases. (The in-core Q R factorizations of narrow panels
constitute a small fraction of the total work in this algorithm, however, so this optimization
is unlikely to significantly impact the total running time.)

If the block of C f to be factored does not fit within main memory, the algorithm
splits it into C1 and C2 and factors the block recursively. Computing C̃2 = QT

1 C2 =
(I − Y1T11Y T

1 )C2 is done in three out-of-core steps, each of which involves a call to
SOLAR’s out-of-core matrix-multiply-add routine: C̃2 = C̃2 + Y1(T11(Y T

1 C2)). This pro-
cess is shown in Fig. 3. The first intermediate result Y T

1 C2 is stored in the Z12 block and
the second intermediate result in T12 (which is still empty). Next, the code reads the first n1

rows of C̃2 into R12. The code then writes out a block of zeros into the first n1 rows of C2,
since Y is lower trapezoidal, and recursively factors the last m − n1 rows of C2.
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C2
~

= –

= –

= –

C2 C2Y1 Y1
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T11  Y1
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FIG. 3. Updating C̃2.

We compute T12 = (−T11(Y T
11Y22))T22 in three steps, using T12 for the first intermediate

result (Y T
11Y22), and Z12 for the second intermediate result. The first multiplication multiplies

two out-of-core matrices, the remaining two multiply in-core matrices. We then zero T21

and R21, since both T and R are upper triangular.
Following the computation of the compact-W Y representation of Q our code actually

proceeds to compute Q or the SVD, depending on the routine called by the user. If the user
requested a Q R decomposition, the code uses SOLAR’s out-of-core matrix multiplication
to compute the first n columns of Q = I − I − Y T Y T . If the user requested an SVD, the
code first computes the SVD U1
V T of R in-core and then applies Q to U1 to get the left
singular vectors U of C f . The best way to apply Q is to use the compact-W Y representation
directly and apply I − Y T Y T directly to U1. Our code currently uses a slightly less efficient
method but we plan to improve it.

4. PERFORMANCE OF THE OUT-OF-CORE QR FACTORIZATION

Table I summarizes the results of three performance-evaluation experiments that were
designed to assess the performance of the out-of-core Q R factorization code. The experi-
ments used our Q R code to factor double-precision-real m-by-n matrices. In three of the
experiments we used matrices with random elements (i.e., the matrices were not produced
by filter diagonalization); the exception is the experiment on Pentium B, which is part of the
filter-diagonalization run described in the next section. We chose the sizes for the random
matrices so they approximate our needs in a realistic physical application.

Two experiments were conducted on a 600 MHz dual Pentium III machine running
Linux (denoted Pentium A), another on a similar machine with a different disk configu-
ration (denote Pentium B), and a fourth and another on the 400-MHz, 112-bit-processor
SGI Origin 2000. We used only one processor on Pentium A, the Origin, two on Pentium B.
Pentium A did not have sufficient attached disk space, so we used four other similar machines
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TABLE I

The Performance of Our Out-of-Core QR Factorization Code, Including

the Formation of the Explicit Q

Machine Mem. m n n0 T Tic Tio M Mic

Pentium A 1.5 GB 106 103 120 39,932 12,280 27,647 100 325
Pentium A 1.5 GB 5 × 105 2 × 103 260 54,339 23,373 30,960 147 342
Pentium B 1.5 GB 2 × 106 4288 60 401,739 222,172 179,360 384 694
Origin 2000 2 GB 2 × 106 2 × 103 70 122,379 69,722 52,630 261 459

Note. The table shows the machine used (one processor was used in all cases), the amount of main
memory that was actually used, the number of rows m and columns n in C f , the number n0 of columns
that the code was able to process in-core, the total factorization time (in seconds), the time spent on
in-core computations, and the time spent on I/O. The last two columns show the computational rate
M of the entire factorization in millions of floating-point operations per second (Mflops), and the
computational rate of the in-core computations alone.

as I/O servers. Communication between the machine running the code and the I/O servers
was done using a remote I/O module that is part of SOLAR. The I/O servers used one 18-GB
SCSI each, and were connected to the other machine using fast Ethernet (100 Mbits/sec).
The effective I/O rate that we measured on this setup was about 9.8 MB/sec. Pentium B
had sufficient local disk space, with a transfer rate of approximately 20 MB/sec. The Origin
had an attached disk array with approximately 300 GB.

The purpose of the random-matrix experiments was toassess the impactof I/O on the over-
all performance of the orthogonalization code. I/O impacts most the 106-by-103 Pentium
run, in which I/O takes 69% of the total running time. The next Pentium run, which orthog-
onalized a wider and shorter matrix, performed better, with only 57% of the total running
time devoted to I/O. The difference is a result of the recursive nature of the algorithm,
which recurses only on the columns of the matrix, not on the rows. On a wide matrix, the
recursion is deeper and a large fraction of the total work is performed on at the top levels,
where out-of-core performance is good. On a narrow matrix a significant amount of work
is performed at the bottom levels of the recursion, where the level of reuse of data in main
memory is low. The Origin experiment confirms our expectation that faster I/O reduces the
fraction of the running time devoted to I/O.

The main conclusion from these results is that on these machines, the code runs at
30−55% of the effective peak performance of the machine and is hence highly usable.
Clearly, on faster machines or machines with slower I/O or on even narrower problems,
I/O would become a bottleneck. On the other hand, wider problems should lead to better
performance.

5. APPLICATION TO THE ELECTRONIC STRUCTURE OF CDSE QUANTUM DOTS

In this section we describe the use of the OOC-FD method to study the electronic struc-
ture of a realistic system, namely a large semiconducting CdSe quantum dot. The electronic
structure of the CdSe quantum dot was described within the framework of the empirical
pseudopotential method [22]. In this approximation the electronic states of the quantum
dot were computed from a single-electron picture similar to a density functional approach.
We used a screened nonlocal pseudopotential developed recently by Wang and Zunger
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[23] for the cadmium and selenium atoms. These pseudopotentials produce local-density
approximation-quality wavefunctions with experimentally fit bulk band structure and effec-
tive masses. The full-scale version of the pseudopotentials without including uncontrolled
approximations that result in a reduction of the energy range of the Hamiltonian were used.
For simplicity the spin–orbit interactions were neglected.

We represent the electronic wavefunction on a three-dimensional grid in real space,
rather than the traditional plane-wave basis, with grid spacing of approximately 0.5 atomic
units. In this representation both the nonlocal potential and the kinetic operators can be
evaluated using linear-scaling methods (finite difference), or alternatively one can use the
more accurate fast Fourier transform (FFT) method which has O(N log N ) scaling, where
N is the number of grid points. Both choices ensure that the Hamiltonian matrix is sparse,
and the OOC-FD method can be applied to obtain the desired eigenvalues and eigenvectors.

The columns of C f , the matrix whose columns span the desired eigenspace, were gen-
erated by the filtering processes that start from random initial vectors, as described in
Section 2. Each filtering process generates approximately 10 orthogonal columns of C f in
our desired energy range (−25−0 eV) for a Newton interpolation length of 1024. Since
the filtering processes are completely independent, we ran many of them on a cluster of
Linux workstations or on multiple processors of a parallel computer (the 112-bit-processor
SGI Origin 2000 in our case). At the end of each filtering process we stored the columns
that were generated in a separate file. The total computational effort to generate the filtered
states was approximately 1000 CPU hours.

Once the filtering processes was terminated and the output files were ready, our out-of-
core Q R code collected the columns of C f from these files, where multiple columns were
stored one after the other. All the columns were collected into one SOLAR matrix file,
which was stored by block to optimize disk accesses. Our code can collect filter output files
from files stored on locally accessible file systems (typically local disks or NFS mounted
file systems) or on remote machines. The code collects columns from remotely stored files
using scp, a secure remote file copying program.

Next, we computed the SVD, U
V T , of C f . We used the singular values to determine
the numerical rank r of C f . We then used the first r columns of U , corresponding to the r
largest singular values, as an orthonormal basis for C f , to reduce the order of H , computed
the eigenvalues and eigenvectors of the reduced Hamiltonian Ĥ and then the eigenvectors of
H . We assumed that three r -by-r matrices of size r fit in the main memory, which allowed
us to compute the eigendecomposition of Ĥ in the main memory (we used LAPACK’s
DSYEV routine).

The results for the electronic density of states are shown in Fig. 4 for the largest system
studied so far. The total number of atoms in the quantum dot is 1277, with 648 cadmium
atoms and 629 selenium atoms. The dangling bonds of the cadmium and selenium surface
atoms were terminated with ligand potentials to eliminate all surface states from the band
gap [9, 24]. The total number of states that were generated in the filtering process is 4288,
somewhat larger than the number of occupied states (2515), to ensure that all occupied
states are recovered in the process. The number of grid points in each dimension was 128,
resulting in a Q R decomposition of a matrix of size 2,097,152 by 4,288, which amounts to
67 GB of memory! The resulting HOMO–LUMO band gap is 2.19 eV, in agreement with
other approximate methods [9, 24].

The out-of-core steps (steps two and three) were obtained on a 600-MHz dual Pentium III
machine with 2 GB of main memory and four 75-GB, 7200-rpm IDE disks, running Linux.
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FIG. 4. The electronic density of states of a large CdSe quantum dot computed within the framework of the
semiempirical pseudopotential method using the out-of-core filter-diagonalization method.

The disks were controlled by an ATA-33 controller. The transfer rate of a single disk was
approximately 20 MB/s. The orthogonalization step took 401,739 s, consisting of 222,172 s
in actual numerical computations and 179,360 s in I/O. These numbers are also reported
in Table I. We then performed the diagonalization step which consists of three out-of-
core matrix multiplications, which took 137,341, 118,313, and 134,336 s, respectively. The
main conclusion that can be drawn from these results is that the I/O in the out-of-core
orthogonalization step slows the computation by less than a factor of two!

6. SUMMARY

We have presented an out-of-core filter-diagonalization method that computes the eigen-
values and eigenvectors of a large sparse matrix within a desired range of eigenvalues. The
method is based on the following three steps. The first filtering step produces nonorthogonal
states in a desired range of eigenvalues. These states are then orthogonalized using the out-
of-core SVD decomposition method. Finally, the Hamiltonian is diagonalized within the
subspace spanned by the orthogonal states generated in the second step. We have demon-
strated that the code is efficient and that it can be used to solve problems whose size is much
bigger than main memory. This has been shown both for a random matrix model, and for a
more realistic physical system.

We believe that the OOC-FD method would be useful for more realistic electronic struc-
ture theories, such as the density functional theory. The main advantage of the OOC-FD
approach over other existing methods is that a single orthogonalization of all states is
required. This is the key point for an out-of-core algorithm to succeed. We also expect
that the out-of-core algorithm would be useful in other situations that require large-scale
orthogonalization.
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